Removal of Copper(II) and Cadmium(II) ions from Aqueous Solutions Using Banana Peels and Bentonite Clay as Adsorbents

نویسنده

  • Nidaa Adel
چکیده

Adsorption removal of Cu(II) and Cd(II) from aqueous solution using low-cost banana peels (a food waste) and bentonite clay (natural resource), was investigated. The adsorption process was studied in a batch scale at mean operation parameter which were pH, adsorbent particle size, adsorbents dosages, and initial concentrations of metal ions. All experiments were conducted at room temperature. Langmuir and Freundlich adsorption isotherm models were achieved to describe the quantitative uptake of Cu(II) and Cd(II) ions by adsorbates. The results show that the maximum adsorption removal reach to 80% and 99.5% for Cu(II) on to banana peels and bentonite respectivelyand77 % and 98% for Cd (II) onto banana peels and bentonite respectively at optimum operating conditions: pH 5, particle size 75μm,adsorbent dosage 2 g/100mland metal concentration 5 mg/L .The equilibrium adsorption data for Cu(II) and Cd(II) were better fitted to Freundlich adsorption isotherm model than Langmuir.. The study concludes the use of banana peels as a food waste and bantonite as a natural adsorbent for removing Cu (II) and Cd(II) from aqueous solution was effective. Thus offering a low cost material show potential use it to remove heavy metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Copper and Zinc ions removal from aqueous solution by modified Nano-bentonite using Response surface methodology

Presence of heavy metal ions in wastewater is an important public concern. Adsorption are commonly used technique to remove various pollutants, including the ions, from contaminated water sources. However, common methods for adsorption are not completely efficient at low ion concentrations and the adsorbent should be improved in order to reaching the acceptable levels of adsorption efficiency. ...

متن کامل

Removal of copper ions from aqueous solutions using polypyrrole and its nanocomposites

In this article, preparation of polypyrrole and its nanocomposites as adsorbents werediscussed and the capability of separation of copper ions from aqueous solution were studied.Polypyrrole was prepared by chemical oxidative polymerization method of pyrrole usingFeCl3 as an oxidant. The removal of Cu (II) was investigated using PPy, PPy/TiO2 andPPy/TiO2/DHSNa nanocomposites. The products were i...

متن کامل

Removal of Pb(II) and Cu(II) Ions from ‎Aqueous Solutions by Cadmium Sulfide ‎Nanoparticles

   In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...

متن کامل

Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II) Ions from Aqueous Solution

Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II) ions from aqueous solution. ...

متن کامل

Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study

The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015